Traveling wavetrains in the complex cubic–quintic Ginzburg–Landau equation
نویسندگان
چکیده
منابع مشابه
Traveling waves and defects in the complex Swift-Hohenberg equation.
The complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with a finite wave number at onset and, as such, admits solutions in the form of traveling waves. The properties of these waves are systematically analyzed and the dynamics associated with sources and sinks of such waves investigated numerically. A number of distinct dynamical regimes is identi...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملInvasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal
Periodic Traveling waves (wavetrains) have been studied extensively in systems of reaction-diffusion equations. An important motivation for this work is the identification of periodic Traveling waves of abundance in ecological data sets. However, for many natural populations diffusion is a poor representation of movement, and spatial convolution with a dispersal kernel is more realistic because...
متن کاملsome new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation
in this paper, we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method, homogeneous balance method, extended f-expansion method. by using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...
متن کاملTraveling Waves for the Whitham Equation
The existence of traveling waves for the original Whitham equation is investigated. This equation combines a generic nonlinear quadratic term with the exact linear dispersion relation of surface water waves of finite depth. It is found that there exist small-amplitude periodic traveling waves with sub-critical speeds. As the period of these traveling waves tends to infinity, their velocities ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 2006
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2005.08.080